(TODO: Better name?)

Basic concepts

- Blocks attach to each other with magnets. Power lines are on top of magnets.
- There is one power block that supplies power.
- The signal is transmitted digitally between each block (using IR light).
- Each block typically has one output signal that it broadcasts to all neighbors, and uses the neighbors output signals for some of its parameters.
- There is one generic computational block that can be set to different modes / functions.
- There might also be other types of blocks eventually, e.g. sensor blocks, motor blocks, tentacle blocks, light driver blocks, wall power remote control blocks, etc..
- Dimensions of block probably around 7 x 7 to 8 x 8 cm , leaves room for 4 xAA battery case and fits nicely in hand.
- Rectangular grid allows for double sized or odd sized blocks too (e.g. one to two octave piano keyboard block).

Blocks

Powerblock

- 4xAA battery holder
- DC 5V input jack
- PWM output drivers x 6 (one for each edge, encode value to 0 ..full output cycle)
- Servo outputs x 6 (one for each edge, encode incoming edge value to servo position
- (Power switch)
- Builtin speaker would be nice too.

Sensor Block

-

General computation block

- ATMega microcontroller, 4 RGB leds, potentiometer for navigation and parameter adjustment, 4 clickable edges, 2×7 segment led screen
- Each mode has a number of parameters, whose values can be set with the rotating wheel to a specific value, or to the (average) value of specified neighbor output(s), or maybe to more complex functions (simple signal / noise generators)
- Available modes (followed by parameters for the mode):
- Signal generator
- Waveform
- Sine, Square, Sawtooth, etc
- Frequency
- Amplitude
- Noise generator
- Sequencer
- Random melody / sequence generator
- Mixer
- Filter
- Delay filter (echo, reverb, etc effects)
- RGB signal visualizator
- Neural network / game of life nodes (4 of them, one for each side)
- etc

Part list (for general computation block):

- Rotary encoder x1
- http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail\&name=987-1398-ND
- 10 pcs: 0.93900 / a
- Microcontroller x1
- ATMega 328 PU
- http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail\&name=ATMEGA328-PUND
- 3.05 (25 pieces: 1.91 / a)
- or AT90USB162 (builtin usb support, surface mount)
- http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail\&name=AT90USB162-16AU-ND
- 2.88 (25 pieces: 1.8 / a)
- Resonator 16 Mhz x1
- Digikey
- http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail\&name=490-1214-ND
- 10 pcs: 0.399 / a
- Futurlec
- http://www.futurlec.com/Crystals/RESON16M0P3pr.shtml
- 0.2 /a
- Capacitors x2
- Filter caps for microcontroller
- (Close to zero, already have)
- Power cap for scratchy contact
- 47 uF or similar electrolyte
- Protection diode for power polarity
-~0.5-1 A @ 6V
- Resistors
- Series resistors for RGB lights, LED segment display..
- LED Segment display: 14 (or 16) resistors
- RGB Leds: 12 resistors
- Maybe use resistor networks for saved space and improved sanity
- Resistor network, 7 resitors, 8 pin, 220 Ohm: (maybe a bit too expensive)
- Digikey
- http://search.digikey.com/scripts/DkSearch/dksus.dll?

Detail\&name=4608X-1-221LF-ND

- 0.25 / a when 50+
- Futurlec
- http://www.futurlec.com/ResNetworks.shtml
- 220ohm 9 Resistor Network (10 pins)
- 0.25 / a
- Combination resistors for tilt switch, 4 of different unique values (high accuracy, we'll get 16 different values that we need to differentiate after A/D)
- IR Leds, 940 nm , 3 mm x 4
- Digikey
- http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail\&name=754-1241-ND
- 0.11 / a when $25+$
- Futurlec
- http://www.futurlec.com/LED/INF3940pr.shtml
- 0.13 / a when $25+$
- IR transistors 940nm x4
- Digikey
- http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail\&name=1080-1158-ND
- 0.21 / a when $10+$
- Futurlec
- http://www.futurlec.com/LED/INFD3940TRANSpr.shtml
- 0.15 a
- RGB Leds, common anode, diffuse x4
- 0.25 / a from ebay seller for $100+$
- Tactile swithces x 4
- http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail\&name=450-1650-ND
- 0.056 / a when 50+
- LED Dual 7 Segment screen x1
- Futurlec
- http://www.futurlec.com/LED/7DR5621BSpr.shtml
- 0.75 / a when under 25
- Magnets x 8
- http://www.dealextreme.com/p/super-strong-rare-earth-square-re-magnets-100-pack-51744
- 0.144 / a when $100+$
- Tilattu
- Plastic cover material - diffuse, translucent white or darker plastic, preferably something not as brittle as acrylic
- Plastic case, 3D printed?
- PCB (smaller than total footprint)
- Programming header?
- Shift register, 74HC595 x2
- Through hole
- http://www.futurlec.com/74HC/74HC595pr.shtml
- \$0.5
- $\$ 0.42$ when $25+$
- $\$ 0.35$ when $100+$
- SMD version (SOIC)
- http://www.futurlec.com/74HC/74HC595SMDpr.shtml
- \$0.15
german partner for a lasercut top surface $\sim 2 € / a$ when ordering 25 .

Cost: 8.86 + case plastic, pcb etc -> ~10\$(+)

TODO: LEDs need sources and sink capable of driving them, atmega only supports max 25-30mA per pin, and max 110mA total.

Need 4 sinks for

- 3 RGB channels
- 1×4 IR sender leds (one channel) (could also be source-driven)

Need 6 sources for

- 2 (or 3) led segment displays (selecting character to light up)
- 4 RGB Leds, for selecting directions to light up

7 darlington transistors sink

- http://www.futurlec.com/Linear/ULN2003Apr.shtml
- \$0.3 / a for 25+
- http://www.futurlec.com/Linear/MC1413Ppr.shtml
- \$0.26 / a for 25+

Single PNP transistor

- http://www.futurlec.com/Transistors/PN2907Apr.shtml
- $0.6 \mathrm{~A}, 500 \mathrm{~mW}$ dissipation, high gain.
- \$0.04 / a for $100+$
- Most widely used, so use this by default
- http://futurlec.com/Transistors/MPS2907Apr.shtml
- \$0.04 / a for $100+$
- http://futurlec.com/Transistors/2SA1515pr.shtml
- \$0.04 / a for $100+$

We have two reels ($\sim 4 \mathrm{k} p \mathrm{pcs}$) of PNP SMD transistors (100 mA) at the lab.

Single NPN sink transistor

- http://futurlec.com/Transistors/KTC3203pr.shtml
- ~\$0.04 / a for 100+
- Not very common, but available from futurlec. Substitutable with any NPN transistor with hfe > 100, voltage $20+$, and currect handling of more than 500 mA
metal strip for holding magnets (thin copper?)
- or trap them in a wire loop?
-> About \$0.05 per source or sink -> + \$0.5

